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1. Introduction and Summary

The present paper is a continuation of the study of Feynman integrals under-

taken in Kallianpur and Bromley [ill. A major theme of that paper, not taken up

here, was the idea of using analytic continuation in several complex variables to

define Feynman integrals for different classes of integrals. The purpose of the

present work is two-fold: (1) To define sequential Feynman integrals by means

of finite dimensional approximations and (2) to establish the existence of both

analytic and sequential Feynman integrals for a wider class of integrals than the

Fresnel class considered in Kallianpur and Bromley or in Albeverio and Hjegh-

Krohn [11,1.] The latter results will be collectively referred to as Cameron-

Martin formulas because of their formal similarity to problems of equivalence of

Gaussian measures. A special case of the Cameron-Martin formula was given in [12].

Both the analytic and sequential Feynman integrals and the Cameron-Martin formula

will be investigated in this paper at the level of generality adopted in [111,

namely for classes of functionals on abstract Wiener and abstract Hilbert spaces.

A special feature of the paper is the definition of the analytic Feynman in-

tegral for classes of functions on a Hilbert space H. This is done by the use of

finitely additive Gauss measure on H and the introduction of the "i-lifting" map.

These ideas, together with preliminaries on abstract Wiener spaces are discussed

in Section 2. Section 3 is devoted to theorems on analytic Feynman inteqrals.

All the results pertaining to sequential Feynman integrals are given in Section 4.
0°

These include the Cameron-Martin formula for inteqrands in G (H) and for the class

(i(B) of functionals on abstract Wiener spaces. In each section results are proved

for Feynman integrals on Hilbert and abstract Wiener spaces respectively.

In Section 5, we specialize the theory to Feynman path integrals and briefly

indicate how the solution of the Schrodinger equation can be represented as a

Feynman integral either on a Hilbert space of paths or on the space of paths of

,16

N.

- - . o •. •• . o . oo, o . ,°, .-- , °, , L% 2 . 40 .N.'Z. . , . .



., 1.2

the Wiener process. The results of Section 5 (except possibly for subsections

(d) and (e) and the remarks in (e)) are not new and are included as an application

of the theory of the earlier sections and also to enable the reader to appreciate

the physical background that initially led Feynman to his inteqral [6). Moreover,

while making Feynman's arguments rigorous in this section, we have tried to ad-

here as closely as possible to his original approach as described in his book with

Hibbs ([7], Chapter 3, especially Sections 3.5, 3.6 and 3.11).

The relationship of our paper to other work in this area is discussed in Sec-

tion 6. Sequential definitions of the Feynman integral have appeared in a very

recent Memoir by Cameron and Storvick [3] and in an earlier paper by Truman [151.

- Both these papers deal with a Hilbert space of paths, the RKHS of the Wiener pro-

cess and define a sequential Feynman integral based on polygonal path approxima-

tions. Our definition is more general in two respects: it applies to any separa-

ble Hilbert space H and is given in terms of arbitrary sequences {P I of finite- . n

dimensional orthogonal projection operators P converging strongly to the identity
n

in H. It is more general even for the case when H =Ht, the RKHS of the Wiener

process over C[O,t] and includes approximation by finite Fourier sums instead of

polygonal path approximations.

Cameron and Storvick confine their investigation essentially to what we call

the Fresnel class over C[O,t] and hence their results cannot be applied to any

" problem involving unbounded potentials. Elworthy and Truman, on the other hand,

give a version of the Cameron-Martin formula for their sequential integral on H
t

in their paper [5]. Since this paper was written, we have seen a copy of a recent

"t %" paper by Elworthy and Truman, "Feynman maps, Cameron-Martin formulas and anharmonic

oscillators," kindly sent, to us by the authors. In it, a Cameron-Martin formula

*-- is established for Feynman path integrals. Theorems 3.2 and 4.2 of our paper may

be regarded as generalizations of this result. Our definition of the sequential

I%%
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Feynman integral is also connected in some respects with Tarski's (Tarskl [14]

and is alluded to in Section 6.

In the Kallianpur-Bromley paper, an analytic Feynman integral was defined for

a (Fresnel) class F of functionals on an abstract Wiener space (H,B) and it was

shown that there was a Banach algebra isomorphism between F and the Fresnel class

F(H) for which a Fresnel-Feynman integral had been defined by Albeverio and H1eqh-

Krohn [11. The present paper throws further light on this question: The results

of Sections 3 and 4 extend the Albeverio-Hfegh-Krohn theory to a larger class of

integrands, viz. to Gq (H). Definitions of analytic Feynman integrals for H are

provided directly (via m-lifting maps) and, finally, Section 4 supplies a sequen-

tial Feynman integral theory in the set-up of Albeverio and Hoegh-Krohn.

A final comment is in order about one of the main reasons for writing this

paper. In the literature on Feynman integrals - and we refer here not to the work

of physicists, but to theoretical investigations (e.g. in much of the work of

Cameron and his co-workers) - the role of Wiener space and Wiener measure provides

a basic setting for the analytic continuation procedure. On the other hand,

the somewhat different approach of Albeverio and Hiegh-Krohn does not make any

use of probabilistic ideas. The work of the present paper shows that all these

approaches are basically equivalent. The heart of the matter is that the Feynman

integral, can be obtained no matter how it is defined, by means of a very general

finite dimensional approximation procedure, set forth in Theorem 4.3.
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2. Preliminaries: Abstract Wiener spaces and m-lifting maps

The basic notions of abstract Wiener space, measurable norm and "m-lifting"

map are due to L. Gross (see [8] and the references given there). We briefly

summarize them below for the reader's convenience.

Let H be a real separable infinite dimensional Hilbert space with inner pro-

duct (.,-) and norm f" Let P be the set of all orthoqonal projections on H with
finite dimensional range. For P E P, let

Cp {P- B: B a Borel set in Range PI

and

C UC
P

A cylinder measure is a finitely additive nonnegative measure on (H,C) such

that its restriction to C is countably additive for all P e P. The canonical
P

Gauss measure m on H is the cylinder measure on (H,C) characterized by

i (hhI ) _1hl 2
(2.1) f e dm(h) = e hl

Let be a measurable norm on H, i.e. for every c >0, there exists P0 E P

such that for all P 1. P,, PE P, we have

m{hEH: IlPh 1 >F} < .

It can be shown that H is not complete with respect to 11'1.-(See [13]). Let

B denote the completion of H under 11-11 and let i denote the natural injection.

The adjoint operator i* maps the strong dual B* continuously, one-to-one, onto a

dense subspace of H* (which is identified with H). By a well known result of

-lGross, the induced measure mi on the cylinder sets in B is indeed countably

additive and hence extends to a countably additive measure V on F--the Borel a-

field on B. The pair (H,B) is called an abstract Wiener space and P is called

the abstract Wiener measure. If H = {fE C[0,11: f absolutely continuous,
h~. df L2

f(0) =0, -EL [0,11} with the inner product
dt

dfl df2
(fif2) fl(- . -)dt,

-.j % ".~ 0- .dt-" . . -"d.. .. t . . "•"% . -"," ."-"•" . .••"-" . ' . ."."."-" ••• ." ' '



2.2

then the uniform norm on H is measurable and in this case B isc 0 [0,11 and V is
%0"-" the classical Wiener measure on C(0,11. The concept of measurable norm and ab-

0

*stract Wiener space is due to Gross. See Kuo [131 for forther details.

We will briefly describe the integration theory on (H,C,m). We now fix a

CONS {e.} of H, such that e. E B*, for all j. For hE H, xc B, let

n
lim I (h,e.)e.(x), if the limit exists,

(2.2) (h,x)
0 otherwise.

Let L:H L(B,B,\)) be defined by

L(h)(x) = (h,x)

Then L is a representative of the weak distribution corresoondina to m i.e., for

hlh 2 ..., h EH and B a Borel set in Rk,
*1 2 k

(2.3) m{h: ((hlph) ., (h ,h)) EBI = V{(L(h I ),..., L(h)) E B}.

1'k 1k

For a proof that (2.3) holds, see [11). For a cylinder function f on H oiven by

(2.4) f(h) = ((hl,X),..., (hkx)),
Ik'

where h c H and 0 is a complex valued Borel function on Rk we denote by P(f) the

random variable ((hl, .x .) (h,., x)) on (B,8,v). We extend this mapping as follows:

Definition: Let L(H,C,m) be the class of complex valued continuous functions f

on H such that the net {R(foP):P EP} (P <P if Ranqe P1 Ranqe P2) is Cauchv in
1 212

1 %-probability. Further, for f E L(H,C,m), let

(2.5) R(f) lim in v-probability R(foP).
PEP

The mappinq R will be called an 'm-liftin.'

Definition: Let

L (H,C,m) = {fEL(H,C,m):flR(f)Id<

and for f c LI(H,C,m) and CE C, define

(2.') f dm= fR(ic)-R(f)dv

N' V. *~.~-- *%.-~:~Y,.~'..v '



2.3

Remark 1. In the above definition we have taken (B,B,V) as the "representation

space" for the weak distribution L and for the m-liftina. Other linear probability

... spaces can also be chosen leading to Feynman inteqrals of different classes of

functionals. This point will be taken up in Section 5.

We will now introduce the Fresnel class F(H) of functions on H. This class

plays an important role in the later sections. Let p4(H) be the class of all

countably additive complex measures on Borel subsets of H with finite absolute

variation. Let F(H) be the class of all functions f of the form

: "r i(hth)

(2.7) f(h1 ) = e 1 d(h)

for some ji -f(H). F(H) is the Fresnel class of Albeverio and Hoeqh-Krohn [11

and has been discussed also in [111.
°1

*i[ The next result shows that F(H)cL (H,C,m) and aives a representation for

R(f) for f g F(H). For convenience we will use the followina notation throuqhout

this paper. Let E be avector space and let e:E ). For X>o, we denote by 0

the function e (e) =6(0 ( e), e EE.

Lemma 2.1: Let fE F(H) be as in (2.7). Then fEL (H,C,m) and R(f) =F, where F

is given by

(2.8) F(X) f e (hx) dui(h) xEB.

Further, for X >0, we have

(2.9) R(f F for all >0.

* Proof: Fix p E (H) and let f be given by (2.7). Continuity of f follows from

• the Dominated Converqence Theorem for V. For PfEP,

(foP) (h1) = f(Ph

S= fe i(h'Phl) dlij (h)

-' fei (Phhl)dp(h)

. . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . .. .



"( 2.4

From the definition of m-liftinq for cylinder functions, it follows that

(2.10) R(foP)(x) =fe(Phix) de(h).

Using Fubini's theorem
'" ~~~~i (Ph,x) i (h,x)I d''d j

(2.11) fIF(x)- R(foP)(x)ldv(x) 5 fHfBIe -e dv(x)djoI(h)
i~h-P(h)

!5 f, f~ll ih h x )  Idve) d ! (h),

. where IpI denotes the total vairation measure for o. For 0 >0, let

2
(2.12) u(o) = fm I-e' Yll//' e- Y dy.

Since the distribution of L(h-Ph) under V is Normal with mean 0 and variance

2
h-Phi , we have from (2.11) and (2.12),

(2.13) 'B IF(x) -R(foP)(x)ldv(x) !5 f' u(Ih-Phj)djvj(h).

Since u(cf) -0 as Y-0 and u is bounded, the Dominated Convergence Theorem for hAI

implies that

{f B IF(x)- R(foP)(x)ldv(x)PE P 
0

Hence

(2.14) R(f) = F.

From the definition of (h,x) , it follows that for >0,

(h,)x) = X(h,x) (Xh,x)

Hence

(i(h,h I)f(h) e di (h)

and

Fx) W fei (h , x ) d h* FXdp (h)

where PJ, E M(H) is defined by

U(B) 1('B).

Hence invoking (2.14) for f ,,F we et

R(f ) F . [

i'-[ -- -, -. .,. ... .... ......... .. . .. . . . . -. . ., - v ''",.., ."- . .". "v .. '-,.,
% %-



2.5

Remark 2: The same calculations as above also aive us the following result. If

P - I, P E P, then
n n

(2.15) R(f oP ) - R(f ) = F in L (B,B,V).n

s
(Here P -*I means P converges strongly to I).n n

We now wish to evaluate the m-lifting for a wider class of integrands on H

which correspond, in physical problems, to certain unbounded potentials such as

the anharmonic potential. In the latter context and for the RKHS of the Wiener

process the class was introduced by Elworthy and Truman and also by Ph. Combo

* et al. (5,41.

Our immediate aim is to establish Proposition 2.4.

Lemma 2.2: Let A be a trace class operator on H and let P E P be such that
n

sP - I. Then, jI'Ii denoting a trace norm we have
n

(2.16) IIPnAP- AllI  0.

This is a well known result. For a proof see Gross ([8], Corollary 3.2).

Lemma 2.3: Let A be a self adjoint trace class operator with eiqenvalues fa } and

corresponding eigenfunctions {e 1. Let u(h) = (h,Ah), h E H. Then, for all

X>0, U EL(H,C,m) and

(2.17) R(u ) = vX

where v is given by

n

(2.18) v(x) lim [(ekx) if the limit exists,
n j=l

= 0 otherwise.

Proof: Since we can write A = A+ - A where A+ and A are self adjoint, positive,

trace class operators, we have u(h) - u +(h) - u_(h) where u (h) - (h, Ath). It

* suffices therefore, to prove the result for a self adjoint, positive, trace class

OI

* ~* **. *.** . . *. ~



2.6

operator A with eigenvalues {a J and corresponding eigenfunctions {e }. Accordingly

set u(h) = (h, Ah) = JIBh II2 where the self adjoint, Hilbert-Schmidt operator B is

the square root of A. Now Theorem 2 of Gross [8] can be applied to u and it follows

that R(u) exists. Furthermore, Corollary 5.3 of [8] implies that R(u) = lim in v-

probability R(u P n) where Pn e P is any sequence converging strongly to the identity.

Choosing P to be the orthogonal projection onto span {el, ... , e } it is easy to
n n

see that R(u) = v is given by (2.18). Note that the above limit is finite v-a.s.

A 1
since the series I a converges. If we now fix X> o, we have u (h) - u(h)

j=l

and so R(u ) = R(u) = v. From the definition of (ej, x)~ it follows that

Sv(x) v (x) and we have R(u) vA.

We will henceforth use the more suggestive notation (x,Ax) for v(x).

Proposition 2.4: Let i JE(H) and A be a self adjoint trace class operator on H.

Let q,G be defined by

(2.22) g(h) = e e

-- ~~h i2(,x ~ "(,)dU (h2xx-H
and

(2.23) G(x) = e i/2 (xIAx)fei h X)dp(h) = ei/2(x,) F(x), say.
H

Then for A >0, we have

(2.24) R(g ) G

Ss
and further if P - I, then

n

(2.25) R(g oP ) G G  in L (B,B,v).
n

K.
%# .1 ..... " " " .".. .... . . . . . . .-.. . . . . . . . .".-." " " • " " """'' " " j' " " "•" " ° "" "" " " . " " "-".



* 2.7

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ > , gA e7 7 u (h ) A
Proof of Proposition 2.4. if (h) efX(h) and (2.24) follows fromi

the multiplicative property of R. Next for Psep,

X 2 R(u OP) A 2 A
R(g oP) -G =e R(f oP) -e F

and

A ~R(u' oF)
(2.26) f JR(g oP) G I dv < 'j'A' e e I dv,

B B

+ f IR(f oP) -F dv
B

where 1W.1' is the total variation of the conpiex-valued measure pi introduced in

Lemma 2.1. The integrals on the R.I{.S. of (2.26) converge to zero as P-1I along P

by the dominated convergence theorem. We can, in fact, replace P by P in (2.26)
n

and take the limit as P n I. This proves (2.25).

.. .%



* -3. Analytic Wiener and Feynman integrals

(a) Integrals on abstract Wiener space

Here we recall the definition of analytic Wiener and Feynman integrals civen

in [111 and obtain a "Cameron-Martin" type formula for the analytic Feynman inte-

grals. (For a special case, see (12]).

Definition: Let F be a measurable complex-valued function on B such that

(i) JF( ) = fF(- 2 x)dv(x) exists for all real X>0.

(ii) There is an analytic function J* on Q {z E4:Rez >01 such that J*(X) =
F F

J,(A) for real \>0.

Then we will define IZ(F) =J*(z) and call Iz the analytic Wiener integral of F
a F a

over B with parameter z.

If lim IZ (F) exists for some q real, we will denote the value of this limit
z-*- iq a

by Iq(F) and define it to be the analytic Feynman integral of F over B with para-
a

meter q.

If F and G are functions on B such that F=G a.s. V, then it does not imply

that J (A) =J (M) for all X >0 and thus F=G a.s. V does not imply that
F G

I Z(F) =1z(G). (See [11] for a discussion on this point). These considerations
4 a a

lead us to the definition of s-equivalence of functions on B. Given two complex

" valued functions F and G on B, we say that F=G s-almost surely if for each a >0,

y{x C B:Fl(ax) =G(x)} = 0.

It is easy to see that J (M) and J () exist simultaneously and coincide if F=G
F G

s-a.s. For a function F on B, we will denote by [F] the equivalence class of

* functions G which are equal to F s-a.s.

We will now introduce the Fresnel class F(B) of functions on B.

F(B) = {[F]: F(x) fei(h dii(h), l1ebM(H)

*.-..

.r . . . . . . ** :. j'.: . . * . *n n -
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• "3.2

As is customary, we will identify a function with its s-equivalence class and

think of F(B) as a class of functions on B rather than as a class of equivalence

classes.

For 1 11 EP{(H), let U1"P2 denote the convolution of ji and i2 " Also let !l1,l

denote the total variation of PE E(H). Then M(H) is a Banach algebra. If for

f EF(H) given by (2.7), we define 1fj 0 = 1iJI, then it can be easily seen that

F(H) is a Banach algebra and that the mapping v'- f (ii,f related by (2.7)) is a

Banach algebra isomorphism between P(H) and F(H).

It is shown in [11], [31 that F(B) is also a Banach algebra with the norm

IIFII 0 =lhiII and the mapping j-'F (11,F related by (2.8)) is a Banach algebra iso-

* mo rphism.
41

The following result gives an evaluation of the analytic Wiener and Feynman

integrals for FE F(B). This result is taken from [11] and the short proof is in-

cluded here for the sake of completeness.

Theorem 3.1: Let F EF(B) be given by

i(h'Xl) h ()
(3.1) F(x) = fH e dl (h) E

Hz

Then for all z eQ , the analytic Wiener integral 1z (F) exists and
a

(3.2) ( = f e7 hI 2 d 0(h).
aH

0q
The analytic Feynman integral Iq (F) exists for all q R, q # 0 and

an

(3.3) 1a = 'H e-2qIhI 2 d(h).

Proof: By Fubini's theorem, we have

(= ei (h, X' x) _dl (h) dv (x)

1- ~
ix- (h,x) dv(x)dij(h)

Sklhi2dp(h).

= f e

11hJ

. .. . .. . . .



~3.3

Let

(35 H- diJ(h) , ZE -{01, z={ZE4: Rez>0: .

Then JF*() =J () for real A>0 and by the dominated convergence theorem, J*(z)
F F1112 F

is continuous in S2-{0}. For each h EH, e is analytic in Q so that

e ~IhIdz =0 for every rectifiable closed curve C in Q. Since Ie h <

For z E , a simple application of Fubini's theorem and Morera's theorem give the

analyticity of J*(z). The proof of (3.3) is immediate.
F

The classes Gq(H) and Gq(B). For a real number q, q#0, we denote by Gl(H)

(resp. Gq(B)] the class of functions g [resp. GI given by (2.22) [resp. (2.23)]

for some Ui EM (H) and some self adjoint, trace class operator A on H such that the

bounded inverse (I +1/q A)- exists.

Recall that for a self adjoint trace class operator A with eigenvalues fix.,

the Fredholm determinant of (I +A) (denoted by det(I +A)) is defined by

(3.8) det(I +A) = ( (1 +ai)
j=l

and the Maslov index of (I +A) (denoted by ind(I +A)) is the number of negative

eigenvalues of (I +A), i.e.

(3.9) ind(I +A) = #{j: 1 +. <0}.
)

With this notation, we have the following result on the analytic Feynman integrals

for the class Gq(B). (See also [12]).

Theorem 3.2: (Cameron-Martin formula for analytic Feynman integrals). Let A be

a self adjoint trace class operator on H such that (I + 1/q A) is invertible (Q EI ,

o,0) and let FE F(B). Let

(3.10) G(x) = expfi/2 (x,Ax) }F(x).

Then the analytic Feynman integral Iq(G) exists and

(3.11) qaG =7 del+iqA -e- ind(l + /q A) .qHeia-((I +1/q A)-lh,h) lh

(311 (G) = det (I+l1/q A)he dj(h),a A

%. . . o . . . .", "~~~~~~~~~~~. .. . .". .. ... %. .. ........... -..... ........-.............. •"..... .-
°o , - - , o° . , o -• o, ° , - - • . - . -. -. °. °. •. 0 °. ° . ° • • . •. . . o. . -° .



-• -**. .*-'' o. -

* 3.4

where p is related to F by (3.1). We will give a proof for q 1. The proof in

the general case is similar.

Proof: Let e. be the eigenfunctions and CL. the eigenvalues of A. Let
) J

= (e.,x) and h. =(e.,h). Clearly, 1 0< a.s. and hence we have
"J" j J J

(x,Ax) : o t.2 < s-a.s.

j-1
"; Now,

(3.12) JG(A) = fBG(A x)dv (x,

i 2 OD

= HIIB e 3i dvJ dp(h)
ia. ih.

4 + l- -  h dy]di(h)

since (c.) is a sequence of independent standard normal random variables on (B,v).

To evaluate the infinite product, use the fact that if Reb >0 and c is real, then

2
2 c

(3.13) i/2/i -e + icdy = 1/b e

In this formula and in the sequel,.for a complex number z =re , r real positive,

ei6/2
-T <0 <T, z' will denote the number e , where vr is positive square root of

r. Using (3.13) in (3.12), we get OD h2

2X j=1 it

00

(3.14) JG (M {JH I (  1 1 3-d(h)"

Observe that since A is trace class, 1jj <- and hence the infinite product and

series appearing in (3.14) converge absolutely.

By renumbering the (. if necessary, assume that l+a. <0 for j =1,2,...,

m=Ind(I+L) and (l+a.) >0 for j >m+l. Choose 6>0 such that a. [-1- 6, -1 +61
J )

for all j. This can be done because CEj#-l for all j and Icj 1-0 as j4 . Let

Q' = Qu{zE: Rez=O, jl+I zI <6}.

For z Q', let
m -

(3.15) A (Z) = I (z) 2 , (z-il.) 1,
j=l

.......................... V
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(3.16) A (z) =
2 

-
j --m+l .

and 
h2

(3.17) A3 (z) efH "1 z-ij dij(h).

We will first show that AIA 2 ,A3 are continuous functions on Q' and analytic in P.

Since w- w)2 is an analytic function on fre r>0, -7<e<T1 and for

Z En ( Uz, z - ic. E ', A (z) is continuous on Q' and analytic on Q.1 ict.

Now, let 1 +u.(z) ( ---- ) for z e Q', j !m and 0' ={zEQ':0 <1/r0 <- Izl -ro.
I z r 0

It is easy to see that for some constant K0, we have

1(1+w) - - 1 Kofwl for w Et, lw 5"-5

* Since =.1jaj <O, lj -0 and hence for fixed r0 , there exists a j such thatia . 0"

for j - J0' z E ' ,we have j _ and hence
r @z

(3.18) lu.i(Z) I K Kr I ai
luj( )l- 0 0 j-

5,o

for all j-j F ZEQ . Thus, 0 luj(z)I converqes uniformly on S. Since
0 0  j=m+l j

=Ur = , this implies thatr=2 r
OD

A (z) = T ( + u. (z))
2 =m+l )3

is continuous on Q' and analytic in Q.

As for A 3(z), first observe that for h EH fixed, the series

(3.19) - ), - ¢(h,z)
1-. z - lt.

J

converges uniformly on Q' for all r - l and hence for all h EH, f(h,z) is continu-
* ou onr 0  0
ous on Q' and analytic in P. Also, it is easy to see that Re(f(h,z)) -0. The

dominated convergence theorem now implies that A (z) is continuous on Q' and
3

Morera's theorem along with Fubini's theorem shows that A 3(z) is analytic in Q.

Thus, J*(z) =A (z),A (z),A W is continuous on Q' and analytic in P. It is
G 1 2 3

easy to see that J*(X) =J (X) for real X >0 and hence (by definition) I (G) exists
G G a

,.,

W".,
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and

(3.20) 1I (G) J*j
a G

Now,

(3.21) A (-) Tm j

j=1 (-i-ia.) 2

m -irr/4
e , since 1+a. < 0

j=1 e/I .1a.1)
I

m
= (Ti (1+cz) j ei7/2 ind(I+L)

j-1

(3.22) A O-)= TD(~t)-
2

j=m+l

- TI I(1 as.)1a , as

and2

(3.23) A3 j (-h) Ih

=f e~ 1  h h(1+cta)dji (h)

j=1

i e/ 2 (h, (I +A) -1
hdij(h)

Thus,

(3.24 1- G ind (I +A) f 2(h,(I+A) h)

(G) T a 1+~ Ot e e dji (h). f

j=l "H

(b) Integrals on Hilbert space

We now define analytic Feynman integrals for functions on H. Suppose f:H-+i

is such that for all real X >0, f EL (H,C,m). For real X >0, let

* (3.25) K f(X) = fA m

Definition: Let f be such that there exists an analytic function K*(z) on 0 such
J f

.~ ~ % %
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that K*(X) =K (A) for real A >0. Then we define K*(z) to be the analytic Gauss
f f f

inteqral of f over H with parameter z and denote it by z M.a

Further, if for q real, the limit

q zI (f) = lim Iz(f)
a z--iq a

ZEQ

exists, we define Iq(f) to be the analytic Feynman integral of f over H with para-
a

meter q.

Remark 3: Suppose f is such that there exists an F:B-I4 with the property

R(f ) = F

for all real A >0. Then, it is easy to see that for all A >0,

JF(A) = K (M)

F f

and hence I (F) exists if and only if Iq M exists and in that case both are equal.a a

Now Lemma 2.1, Theorem 3.1 and Remark 3 give us the following results.

Theorem 3.3: Let fiEF(H) be given by (2.7). Then for ze Q, 1z(f) exists and
a

11h12
z(f) = f e 2 dil(h).
a H

Further, for all q real, qy0, Iq(f) exists and
a

(3.26) jq(f) = qe 2i-q hh

a H

Also, Remark 3, Proposition 2.4 and Theorem 2.2 yield the Cameron-Martin formu-

la for q c 7 (H).

Theorem 3.4: (Cameron-Martin formula). Let 11 EM(H) and let A be a self adjoint

trace class operator such that (1 +-A) exists, (q E IR , a 0). Let
i (h,Ah)
2 ei (hl ,h ) d( I

(3.27) g(h) = e H dli(h

Then I (g) exists and is given bya

_ % ind(I +-A) - (h,(I + )-h)
(3.28) 1q(g) Idet(I +-A) I- e 2qre f d(h).

a q.H



4. Sequential Feynman Inteqral

(a) On Hilbert space

In this section, we define the sequential Feynman integral and prove an analoqlue

-of Theorem 3.4 (Cameron-Martin formula) for the same.

*-* Let f:H - be such that for all PEP, for all real X >0,

m -

(4.1) f If( E je )I e d <c
R j=l

where m=dim PH and (e',.... e') is an orthonormal basis for PH and then for zEc1 m

define"'"" mzm 2

(4.2) Jf (z,P) = 12) ]mf mf( I .e.)e 2 j=1 jdC.
f 27 3R j=1 3 1

Observe that (4.1) implies that the integral appearing in (4.2) is a proper inte-

gral.

Definition: Let f satisfy (4.1) for all X >0 and P EP. Let q3O be a real num-

ber. Suppose that

lim J f(Z ,P
fnn

exists for all z 4-iq, z EQ and for all P nsI, P EP. Then we define the limit,n n n n

easily seen to be independent of {z },{P 1, to be the seauential Feynman integral
n n

of f with parameter q and denote it by I

Remark 4: It is easy to see that (4.1) is equivalent to

(4.1)' f oP EL (H,C,m)

and further that J (X,P) =K (A). Also, Morera's theorem and Fubini's theorem
f fop

.. % imply that if (4.1) holds for all X >0, Jf(ZIP) is analytic on Q and thus

(4.3) z (fop) K* z) = J(z,P).
a foP f

* So, the sequential Feynman integral can equivalently be defined as

• z

- (4.4) 1q(f) = lim n(fops a n
n

..



4.2

for z -- iq, z EP2 +, P -I if the limit in (4.4) exists for all such {z 1,{P }.
n n n n n

Remark 5: The sequential Feynman integral Iq(f) can be regarded as an inteqral of
the uncion lh~ iq lh 12

the function f(h) h with respect to a "uniform" (complex valued) measure D,
2

normalized such that the integral of ei q lh  is 1. Of course, such a measure does

not exist and hence this indirect definition. Many authors prefer the notation
- ialh l2
f e f(h)V(h) (or some variant of this) for Iq(f). In physical problems, it

. is useful to think of Iq(f) as f eih lh )2 f(h) D(h) ." 
[

s 
.

We now show the existence of I for the classes F(H) and (q(H) and obtain the
s

Cameron-Martin formula for the sequential integral.

Theorem 4.1: Let f E F(H). Then for q#0, 1q(f) exists and is equal to I q(f),
s a

ilhl2

(4.5) 1q(f) 1q(f) = f e q di(h),
s a H

where f is given by (2.7).

Proof: Let Pn - P. Let pn = oP . Then

(4.6) foP (h) f ei(h'hl)d (h
n n1

and hence by Remark 4 above and Theorem 3.3, for z EQ

1 h12 1zin 1 2

2z 2(4.7) Jf (Z'Pn a (fop) = e dv n (h) f e dlj(h).

Now, if z -- iq, z E0; then Pez 0, and hence by the dominated converaence
n n n

theorem, i 2

(4.8) lir Jf(znP) = f e dp(h).
n

Thus lq(f) exists and (4.5) holds.

a

Theorcm 4.2: (Cameron-Martin formula). Let g Eq C(H) be qiven by

(h,Ah)
(4.9) q(h) = e f(h)

where A is a self adjoint, trace class operator on H such that (I +-A) is inverti-

ble and f c FO) is of the form

6%.-;- • . + • .. .. ?<-:.... ... . . : ./ ...... .•.+.,......

. . . * • . % k• .-.• ." . .... ~ , .. * -. . % %. . % . % " % % %
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-"_ e~~i (h'hl)d (l
(4.10) f(h) = fH e h dW(h p (H).

Then I (q) exists, equals I q(g) and has the value
s a

.i ind(I+!A) - -(h, (I +-A) lh)
q d2- 2 q e 2a q

(4.11) 1(q) det(I+qA)l e fH e dH(h)-"s q

Proof: We will prove the case q=l. The proof for aeneral q is similar. Let

P E P, P -*I. Let A =PnAP n I =pOP Thenn'..' n n n n n

(4.12) goP n(h) = e (hAnh)f e (hhl)d. (h 1 )i.. n

Now if
kn

n nn
(4.13) A h = (h,en ) a.

j=l

n n
where a. are the eigenvalues and e. the eigenfunctions of A , then proceedinq as

in the proof of Theorem 3.2, it is easily seen

n 2
_ (h,e j

kn (z - j=I n
J (Z,P) = ) f e (Z-ia-i) di (h).

j=l (z - ia.)

Fix z -- i, z EQ. Then
n n

(4.14) J (zn,P) = a "b
f n n n n

where
n (z)

(4.15) a =

and (h n )j=l (z -iz-).

(4.]) b / n n h

k (nh,e.)2n
n

Zn (h d ()
j=l (z ni.

(4.16) b =f e n 'dvi (h)
n 2

kn(P h ,e)

n(z-ia.)

=fe n dvi (h) .

%

* iijs•
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We will now show that a ,b have limits and evaluate them.
n' n

Let . be the eigenvalues of A, enumerated such that 1 +a. <0 for j =;,...,J

1 + c. >0 for j m+l and m=ind(I+A). (Recall that l+(X. y0 for all j, as I+A
J

is invertible.) Since A -A is trace norm, we can rearrange {.}, j=l,..., k
n 3 n

such that
:-'" n

(4.17) li c. = . , uniformly in j.
n 3

Also, A -*A in trace norm implies that 1Anl flAil1 i.e.

(4.18) lim a I. 1 
= j < I .

n-* jw j-1

We claim that (4.17) and (4.18) imply that

00

(4.19) lim I l t. - lo I. = 0.
n- j=l

.For this write

(4.20) 11cajIlI l---l Ej + a -21l IAjla

and use dominated convergence theorem and (4.17) to get

n
(4.21) lim l lcjl A lc.l = le I.

n - 1 jj I~

Now, (4.18), (4.20) and (4.21) imply (4.19). Using usual arcuments it can be

shown that (4.19) implies

0o

(4.22) lim (sup I lctrn I 0.

k- n>-l j=k

Now write

00 n
(4.23) a = 1 ( +u.)

n )=1

(z) )a
un n -

whre(z iZn) z

n 3

'- ~~ ~ ( n"'-' "" ' " """' ' " ' """" ""e "/ " ' "" "-" ""'""- + -- '-
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(Here we have used that if Rez >0, Rez >0, then (z z -=z' z Now, (4.17),1 2 1 2 1 z2.) Nw 41

z n--i and la1. -0 implies that there exist n 0 J0 such that for n nO, i iO'
n

-ia.
(4.24) KI < _

z
n

and hence for n -no' j->0

-in

(4.25) iu. I  < KI . I KI'K 2  I

n

where KI,K are constants such that
12

-. (4.26) II1 +w--11 < K IwI for IwI -

* "and

(4.27) 1 K for all n.
z 2

n

Now (4.25) and (4.22) give

00

. (4.28) lim [sup Iu ] = 0.
k- n j =k

S"Also, (4.28) and the inequality

.kn

IT (i +u.)- -1< e

.=k j

imply

(4.2()) lim sup[IT (l+uj) -11 = 0.
k- ° n

Now, (4.29) and the usual arguments give

L -" 
"

00 o n 00

(4.30) lim (1 = (1 +u)

where

.-

0n

U. =lim U.

[ .... n .(-i - i .

[...For "m, (1 0.) 0 and thus
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i~ -iT/4

(4.31) u1. 1 +x i- • e _ 
I  - e-ir/2

and for j >m, (i+..) >0 and thus

(4.32) U. II +cj. O
3J

From (4.23), (4.30), (4.31) and (4.32) we have

-i(/2 m -00, - -i/2 ind (I + L)(4.33) lim = e "m/jl (1 +. - Idet(I +A) I e i
n

ror h E H and n -> , let

kn (P h,e n ) 2

0 (h) : -- n n
j=l (z -ia n )

n j

so that

bn f e- n(h)di(h)"

We claim that for all h E H,

def i
(4.34) t (h) - h) - -(h,(I +A) h).

n 2

To see this, let
k n 2n (P h,e.) -1

q(h) =j (h, (I +An - h ) .
2n

j=l (--in)2n

Now,
z ~ (Cn-i - i -.-

Iz +i +
- -1 1 in - 0

z jn

nn,.as n ,since z n- -i. In fact in view of (4.24). this limit is uniform in J.

Let LHS of (4.35) be less than E for all j, where F -0. Then
n n

AloA.+ n.raeclsiplekta
nn

-,l- "

(4.36(h) - (P n 2 S hI 1 0 as nc h h
,n n nh) (h) (P n h,e !5 C 1P nh 2

!.[,. n n nj=l nn"

Also, A iA in trace class implies that

...... -I -i -

ii(4.37) (1I+A ) - (I +A) -I
- n

i''"in trace, class (see Lemma XI.9.15, Dunford and Schwartz [161) and hence ' (h) (h).

.:...This and (4.36) imply (4.34). Since z EQ, it is easily seen that
n
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. R(n (h)) 0
e n

and hence

Iedn(h) I- 1.
p

Thus, from the dominated convergence theorem ani (4.34),

- (h,(I +A) h)
(4.38) b f J e(h)dj(h) f e d j(h) ." n

Now, (4.33) and (4.38) imply that J (z ,P ) converges to the RHS in (4.11). Thus,

1 1I (q) exists and (4.11) holds. Also, in view of (3.28), I (g) =I (q). [1!ss a

We now consider sequential Feynman integrals

(b) On abstract Wiener space

Suppose F:B is such that

(4.39) R(f ) F for all A>0

for some f E L(H,C,m). For P E P, define Fp by

(4.40) Fp = R(foP).

By the definition of the R-mapping for cylindrical functions, it can be checked

that

(4.41) R(f oP) = FP for all X >0.

Now, F P converges in v-probability to F and thus for each A, {F is a finite

dimensional approximation to F . Suppose that the analytic Wiener inteqral

(F ) exists for all PEP and further assume that for all z EQ, z -- iG, (q0)
a n n

5
and for all P s I, P E P' the limit

z

(4.42) lim n n(F ) q (P)
a P s

n-Ko  n

exists. Then we define I (F) to be the sequential Feynman inteqral of F with para-S

meter q.

It is easy to see in view of Remark 4 that

|' ''". '. ". . . "- . -" - " -"- . " - o' - " " . - " -" .k " '-'W"- - - "% -%W. , '%'; ..,'' v
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Iz

rZ(F) Jf (z,P)

a a

and hence I (F) existr if and only if Ia(f) exists (where F,f are related by
S s

(4.39)) and then both are equal.

Thus, Lemma 2.1 and Theorem 4.1 imply that for FeF(B), Iq(F) exists and is
S

ecual to I (F). Also Proposition 2.4 and Theorem 4.2 imply that for G EdP'(B),
a

I (G) exists and is eaual to I (G).
s a

Remark 6- The eaualitv of the sequential and analytic Feynman intecirals can be

viewed as an approximation result for the analytic Feynman intearal in the -Fol-

lowing sense: Let q E r7(H) , z EQ. z -iq and P P. Thenn n n n

z

(4.43) I(a) lim 7 n(ao )
a a n

n

Similarly, for GE O(B) aiven by (2.21) and P as above let G be defined by
n n

i(x,P AP x) i(P h x)

(4.44) G (x) = e n n f e n dlj(h).
n H

Then, for z +-iq, z E 0 we have

z
q-- •i n

(4.45) I (G) = lim I (G ).a a nn

z
In (4.43), 1 n(,(P ) can be evaluated explicitly as we have seen already.

a n

Isino these observations, we can aive a formula for analytic Peynman intearals

for the r class involvinq a sinle limit and proner intearals We state this

result as a theorem for future reference.

Theorem_4.3. Let q(H) and G E (B) be given by (2.22) and (2.23) respectively.

Let ie} be any complete orthonormal basis in H and let z EQ be such that z -- iq
n n n

(say z =-iq +1/n). Then
n

(4.46) 1q(9 ) Iq(g) = Iq(G) I (G)
a s a s

z n- C2j j
2 ji 1 j

=l im  [(f ng( I. .e'.)e
n'r

n jR l 1



4.

From now on, we will drop the suffix "a" and "s" from Iqand Iqwhen the itite-
a s

grands belong to the class F orG

4.%



* 5. Applications to Feynman path integrals

(a) Feynrnan path integrals and the Schr~dinger equation

Feynman's fundamental idea was to show that the solution of the Schr~dinger

equation of Quantum Mechanics (for a single particle of mass m)

-~ iM~at 2 Aip + vip

'P(0,x) O ~X)

can be expressed as

foyI) rn~{ ds -jfOV(y(s))ds
(5.2) iplt,x) = f e2  4y(0) )V(y)

y(t)=x

where the integral is carried over a suitable space of paths and V(y) is a uni-

form "measure" on the space of paths normalized so that

i M t 2

f e Vi y)s = 1.(Y

y(t)=x

In (5.1) above, A is the Laplacian, X~ h where h is Planck's constant and V is a
27T

suitable potential.

For simplicity, let us consider the one dimensional case. In (5.2), let us

write X (s) ='y(t -s) -x, so that X (0) = 0 and y (s) = X(t -s) + x, to aet

-i Elf t(X(s)) 2ds LftV(X(t-s)+x)ds

(5.2)' fPlt,x) f e 2 X0 0(fx(t) +x)V(X)

Assuming that the 'paths' y have finite kinetic energy, we get that X EH , where

H is the real separable Hilbert space of functions X: [0,t] -I1R with X(0) =0,
t

X- = EL EO,tJ with the inner product
to ds

(5.3) (X ,X ) t = Sk(~s

Then (5.2) ' can be rewritten as

1.i r xiit(X (t )+x) d

(5.2)" 1P (t, X) fe 2  $ 4(X (t -s) + x)V(X)
xEH

Vt
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*and in view of Remark 4, the integral appearing in (5.2)' can be reqarded as a

Feynman integral with parameter q =m/f of the function at, x defined by

- 0V(X (t-s)+x)ds

(5.4) gt,(X) = e V0(X(t) +x)

over the Hilbert space H . Thus, Feynman's idea can be expressed as follows: The

*-?- solution to the equation (5.1) can be represented by

(5.5) q(t,x) = I (gt)

where g is given by (5.4).whr t, x

Let the potential V be given by

(5.6) V(x) = ax2 +bx+c+f exYd1il(y)

and let be given by

(5.7) (X) = f3RelxYdi2 (y )

where il'2 are complex Borel measures on IR with bounded variation. Assume that

"EL 2 (IR). Then, it can be shown that gt X (with q=m/)K) and defined by
t~x t

- '. (5.5) is a (weak) solution of the Schrodinger equation (5.1) (see [1],[15]). We

will not give a proof of this assertion. We just remark that 1P defined by (5.5)

can be computed using our Cameron-Martin formula (Theorem 3.3 and 4.2) and then

* . we can proceed as in [1] or [15] to show that p is a solution to (5.1).

. In (5.7) above, the solution to the Schrodinger equation was represented as

an integral over the path space H -which happens to be the RKHS of the Wiener
t

measure. We now show that instead of Ht , we can take the path space to beO

C [O,t]--the space of real valued continuous functions X on [O,t] with X(O) =0.
0

For X H let lXi = sup IX(t)i. Then 1L1l0 is a measurable norm on H
t 0 <s<t

and the completion of H t under 11-11 0 is C [0,t]. (See Kuo [13]).
4ti0

For V,P satisfying (5.6) and (5.7), let

. (5.8) G (X) = exp(- ftV(X(t-s) +x)ds)f(X(t) +x) , XEC 0 [0,t].
t.. " t0
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Then, it is easy to see that G is a continuous function on C0 [0,t] for all
t,x0

X >0 and its restriction to Ht is g t,x Thus we have (by Theorem 6.3 in [13])'i'! (5.) Rglt~ t, t '

(5.9) R(g = G for all \>O,
t ,x t,x

where R is the 'm-lifting' (see Section 2). Hence, by Remark 3,

(5.10) Iq(g ) Iq(G

t,x t,x

and thus the solution q) to the Schr6dinger equation can also be represented as

(m/l1)
(5.11) W(t,x) = I (G t, ).

In other words, the solution to the Schrodinger equation can be represented as a

Feynman integral of a functional over either H or C [O t].
t 0

In most of the physical literature on Feynman integrals, H is taken to be Ht--
t

the RKHS of the standard Wiener process with paths XEC[O,t] with X(t) =0. We

have used Ht instead of H-t , so that the representation (5.6)-(5.7) is similar to

the Feynman-Kac'formula.

(b) Feynman integrals on the RKHS of the pinned Wiener process and the Gauss

Function for the Schrodinger equation

According to Feynman, the Green's function G (or the fundamental solution) for

the Schr6dinger equation (5.1) is given by

(5.13) G(t +s,b,s,a) =G(t,b,0,a)

and i

(5.14) G(t,b,0,a) f e D(x)
XE,X( 0)=a
X(t) =b

where the action functional

s(x) = L(X )ds = (X(s)) 2 V(X(s)]ds

L beinq the Lagrangian and F is the ensemble of all possible quantum mechanical

_ . , .. . -. ,. % .% . . , ... , .- *..- ..... ...-. * .- ," .. " .% -" - 
. .'  
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paths with finite kinetic energy and D(X) is a "uniform measure" on F with the

normalization
i mJt-2

(5.15) f e V(X) = (2rit'-)
XEF,X (0) =X (t) =0 m

Here F' = {XE F: X(O) =a,X(t) =b} is not a linear space (unless a=b=O) and

thus we cannot use our definition of Feynman integrals directly for the integral

appearing in (5.14). Ito (91 has given a proof of (5.14) (for a class of Poten-

tials V) by directly defining Feynman integrals over F' via an isometric mapping

between F' and a Hilbert space.

We shall proceed somewhat differently and follow Feynman more closely. If one

regards the path X of a quantum mechanical particle which is at position a at

time t = 0 and at position b at time T = t as a random path which deviates in a ran-

dom fashion from the classical path X (i.e. the path it would follow under the

laws of classical mechanics), then it is natural to write X=X +Y, Y being the

random deviate and write the integral in (5.14) as an integral over Y.

In his book [7] with Hibbs, Feynman has included a brief discussion of this

point of view with special emphasis on the case of the harmonic potential.

m 2 2
Let V(x) = W x so that the action S(X) is given by

2
mft(

S(X) (X 2)ds

Since the classical path X satisfies

"" 2-
X + X W =x0,

s s

it can be easily checked, using integration by parts, that

(5.16) S(X) = S(X) + S(Y).

Since D(x) is a "uniform" measure, V(x +Y) = V(Y),Feynman argues that

i i- 1- y0 - sx)M- (x+Y) .s Mx M

(5.17) e (X) = S e ( (Y) e eX f e" V (Y)

XEF' YET' YET'0
00

..........................'.-~.*......-...%.*.-.*.
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-:in view of (5.16), where o =Y {Er: Y(0) =Y(t) =0}. It is a simple exercise to

show that the first factor on the RHS in (5.17) equals

intw 2 2
(5.18) expIPW[ ((a + b )cos Wt -2ab)]

We now show that the second factor can be expressed as a Feynman integral as

defined in Sections 3 and 4, and can be evaluated using the Cameron-Martin formula

(Theorem 3.4 and 4.2) and that G given by (5.13), (5.14) is the Green's function

* for the harmonic oscillator.

* *Let H be the RKHS of the pinned wiener process on [0,t] i.e.

H = YEH Y(t) =01. Then, as sets H
0  

=P Let
o t t Ot 0

- iM 2ft~ ) 2ds

(5.19) g(Y) =e

* Then S() Iy2

e =e *g(Y).

We shall regard Feynman's heuristic integral

_ (Y) - Y
(5.20) f eo' V(Y) = f e g (Y)DV(Y)

YE ~ YEH '

j -1,(-)

as he ntgra qvenby(2Trit-) I X(g) in view of Remark 5 and the normaliza-

tion (5.15).

0q q
We now show that q .7(Hl )~ and evaluate I (g) (with q =nV$) using Theorem

* - 4.2. We adopt a method used by Ph. Combe et al. in [4] for the case of H
t

Define a bilinear form A on H by
o't

(5j.21) A(YY 2) = wfoy1 (s)y 2(s)ds.

It is easy to see that A is continu~ous and symmetric and hence

*A(Y ?Y 2 (Y ,AY2

% for a symmetric bounded operator A. It can be checked that the eigenvalues of A
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2 2
wtare 22 for n =1,2,... and hence A is a trace class operator. Let A, =-qA.
n n

Then

(Y,A Y) = -qw j0(Y(s))2 ds
1 0

and hence

i(Y,AIY)
g(Y) = el

t-' (I1+-1) = (I-A) is invertible and hence g EG )(H and by Theorem
W qi 0,t

(4.2) 1

(5.22) q(g) Idet(I +
1 A I -  ind(I + q 1)

qi

lTr. A- -ind(I-A)=det(I -A)l- e

*2t iIT wt

2 2 1 - - -
I(1 - - 2 [ 7

-]

n=l n 7

~4* ifl wt

2 [-1isin wt- 2 r
-- 2Wt

wt wtwhere [- is the largest integer less than --. Finally combining (5.17)-(5.22),

we have
) --~t2[-] 7-'>(X)

(5.23) G(t,b,0,a) m ) . (1 Wt ) 2 e 2 Tr -e27Titi sin wt e

iTT Wt

mw e_ _ 2 [] exp[ ir1 (a2 +b )coswt -2abl]6, 2TiW sinw t 2X sin wt
2 2

_ wxwhich is the Green's function for theSchrodinger equation when V(x) 2 (See [91).2

The Maslov index does not appear in the expression (111) obtained by Ito in [9].

This is because he considers values of t <-. The Maslov index is also missing in

the expression given in Feynman-Hibbs (7, Chapter 31.

(c) Polygonal approximations on path space

As pointed out earlier, one important consequence of the equality of analytic

and sequential integrals in G is that the analytic Feynman integral can be written

as a limit of finite dimensional integrals. When the underlying Hilbert space is

- - % ' " * % "*
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H these approximating integrals can be taken to be integrals over "polyqonal

paths."

k k k
Let us fix a partition k  {0 - t < t < ... < t t} of [O,t] and let

k 0 1 m

k 1 s(5.24) i(s) 0 l(u) k du.

k ck 1kThen it is easily seen that for i#j, i and are orthogonal and i

k k k
i= I "..... Mk. Let P denote the orthogonal projection onto span( k 

,.... )

Then it is easily seen that for X EH t

k k
m X(t.) -X(t

(5.25) (Pk XHS s M lu) du= 1 -tkt , tk]
i : -i J-i j

k k~
.-.k k k k

=X(tj 1 ) + k tk (s-tj I) for tj_ 1 < s < ti
t -1

k
which is the usual polygonal approximation of X for the partition {tk}.J

It can be checked that if 6() =supIt-t -, thenTr)=Sr_,I tends to zero ask ,te

k 3

P + I. Let us fix such a double sequence {t}.
q

Then for g E 0 (Ht ), we have by the definition of the sequential integral,t

z ,mk Zkmk 2
Zk l kk 2

(5.26) 1 (g) = lim[( ) E )exp(- E in )dk
j j 2

where zk EQ, z -iq.

k k
Here, , _l k is a polygonal path which is equal to jl(t -t k at

jjlj j j-
kqt =t and linear elsewhere. Thus, for g £ 0 q(H ), the Feynman integral of g can bet

A obtain#,d as the limit of "proper* integrals over polygonal paths. The same is

true for g)Gq(H as given by (5.25) is also an orthogonal projection on

%0, t . Of course, in this case 4i H and we have to choose a different basiso,t 1 Oft
k

for Pk(H0).
Oft

% '.

% % % % I
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(dl Fourier series approximation of the Feynman path integrals

In the sequential path integrals defined by Cameron and Storvick and by Truman

[3,15] only the sequence of projections on polygonal paths on H or H are con-
% t t

sidered (see (b)). Theorem 4.3 enables us to choose other sequences {P } that
n

lead to interesting approximations. For example, fix the complete orthonormal

.. system e, where e (M si--, in H and define P to be the orthoqonal

- projection with range, span {ei ... e } In view of Theorem 4.3, for any

*q qEGq(H0  I (g) can be calculated using {P }. With this choice of {P , Theoremg O,t )  n n'

" 4.3 makes rigorous Feynman's ideas of an alternative method of evaluating path

integrals using "Fourier series" (see [7], page 71 where the integrand q of (b) is

considered)

(e) Remarks on the m-lifting approach

In Section 2, the m-lifting R(f) has been defined as a random variable on the

abstract Wiener space B associated with a measurable norm 1l11 on H. It will be

recalled that R has been defined in terms of (h,x) which itself has been defined

to be a Gaussian random variable on (B,V) with zero mean and variance Ih12

Besides the examples of (H,B,v) already considered one could take (i) B =C[O,t]
.:

and v to be a general Gaussian Markov process and (ii) B to be the space of con-

tinuous functions x(TI ,'2 ), (TIT2) E [O,t Ix [0,t I and V to be the 2-parameter
122 1 2

[O Wiener measure (sometimes also called the Yeh-Wiener process). It would appear

that the former problem would lead to Feynman integral representations of solutions

of other types of Schr~dinger-like equations. At present, we do not know of a

* physical motivation for studying problem (ii) in detail.

We have defined m-lifting in such a way as to facilitate comparison of our

results on Feynman integrals for integrands on Hilbert space with analogous results

* Ofor classes of integrands on abstract Wiener space. Our interest in abstract

Wiener spaces as a "ground space" for functionals for which Feynman integrals can

be defined is due principally to the following reasons: (1) A great deal of

" -.. .. .. -. - *. ... . . . %..'.- .. .. %
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effort has been devoted to the analytic continuation approach based on Wiener

integrals; (2) The formal connection between Feynman's representation of the

solution to Schrodinger's equation and the so-called Feynman-Kac formula; (3) The

observation, apparently due to Feynman (which might have inspired most of the

Wiener space approach) that the quantum mechanical paths may be compared to the

irregular paths of a particle performing Brownian motion.

The m-lifting approach seems to make clear, however, that the Hilbert space is

the basic path space rather than Wiener space of any sort. It is possible, indeed

to extend our definition of m-lifting to enable us to define Feynman integrals for

functionals of Gaussian white noise which may be conceded to be even more "irregu-

- flar" than the paths of Brownian motion. We outline this procedure without going

into details.

Take H = L .(IR 1 The canonical Gauss measure on H is then called Gaussian

white noise. Let us write ( , )0 for the inner product in H. Let S =S(IR) be

the space of rapidly decreasing functions regarded as a countably Hilbertian nu-

clear space with semi-norms Il~yl such that Ily112 = =of(l +u 2 )ply()(u) I2 du,
p p I

(p =o,l,...), y M being the jth orderivative of y.

": Then S' the strong dual of S is also a nuclear space (but no longer metrizable).

For convenience let us write Q(y,y') =(y,y') for y,y' ES. By the Minlos-Bochner

* 4)thcorem, there is a unique (countably additive) Gaussian probability measure V

with covariance kernel Q (the "white noise" measure) on (S',B(S')) where B(S') is

the -field generated by the cylinder sets {xES': [<Y 1 ,x>,..., <ykx>] c B}, B
kk

being a Borel set in Ik , yp ... Yk ES. It is well known that S is I" 10-dense

2 2inL (IR) and we have the following continuous imbedding S C (JR) c S'. For any

hrL (IR)we now define (h,x) exactly as was done in Section 2, takina {e.} cS

2
- to be an orthonormal basis in L OR) and <e.,x> to the evaluation of the functional

d? 2x(S.' at e.. For any continuous, complex-valued function f on L OR) the defini-

- tion of Rf is now obvious with (B,V) replaced by (S',v). Thus the entire theory

*, . w . .' % ., "% . .% , . . %.-% . ***.• . *• , *. . -. . . . , , -

* ~ ~ ~ ~ ~ ~ . '6*'~

%.



5.10

of analytic Feynman and sequential Feynman integrals can be transferred to func-

tionals defined on (S',v). Theorems 3.1 and 3.2 immediately apply to classes

F(S') and G whose definition is anologous to that of F(B) and Gq(B) and the

solution to the Schr6dinger equation can be represented as a Feynman integral over

s,.

,II

so. -A-.

S.a

* *-.--



6. Connections with some related work

(1) Relationship to Cameron and Storvick's papers

We now turn to some recent work of Cameron and Storvick. In [ 2 ], they have

V
given a definition of the analytic Feynman integral on C [a,b], the space of con-

0

tinuous functions x:[a,b] IR vanishing at a. In their latest paper [3], Cameron

and Storvick have introduced a sequential definition of the Feynman integral in

apparently a more general setting than [15]. The main result of [3] establishes

A
the existence of this integral for integrands belonging to two classes S and S*

which are closely related to the class S of [2]. We shall now discuss in some

detail the relationship of Cameron and Storvick's work with the approach and re-

*sults of the present paper. Before we do so, however, two general comments seem

to be in order: (i) The integrands in [3] are functions on domains contained in

C0[a,b] or on the RKHS of \-dimensional Wiener process. Even for this case,
0

while the sequential integral defined by Cameron and Storvick deals only with

polygonal approximations, the application of our results permits other kinds of

finite dimensional approximations. One typical and important special case of

the latter, as pointed out in the preceding section, leads to a rigorous justifi-

cation of the "Fourier series" method of approximation alluded to in Feynman and

Hibbs. (ii) All the integrands considered in [3 1 belong to the Fresnel class

*v (as will be seen later)--except for an example of a cylinder function (see Sec.

2) which can be treated easily in our set up. The Fresnel class cannot be used

when unbounded potentials are to be considered (see example of the harmonic po-

4 tential of the previous section). For this purpose, we need to consider the

classes Gq(1) and Gq(B) for which a Cameron-Martin formula has been proved.

To relate their work with our present work, let us assume, for simplicity,

O that v=l and [a,b] = (0,1]. Let H be the RKHS of the Wiener measure on C 0[0,1].

Then, as observed in Section 5, (iH,C 0[0,1]) is an abstract Wiener space (there,

-~~ e~.A r' r***.
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H was denoted by HI). The analytic Feynman integral, fanfqF(x)dx in the notation

of [2] coincides with Iq (F) in our notation for the choice (H,B) = (H,C [0,1]).
an 0

In fact, the definitions themselves coincide. See Kallianpur and Bromley, and

Johnson [11,10] for the relationship of this definition to that of Albeverio

and H~egh-Krohn i11 when F belongs to the Fresnel class.

Let us begin by recalling Cameron and Storvick's definition of sequential ill-

tegral, again for the case v =1, [a,b] = [0,1] for simplicity.

The sequential Feynman integral of a functional F on C [0,1], denoted by

fsfc'Rx)dx, was defined in [ 3] as

(6.11) f  F(x)dx lim Cn f - 0 (t', ndt)F(X(.,TnE))dl
nnn n R

where Tr ={0tn< < <t 1} is a sequence of partitions of [0,1] such that
n 0 1 m

n z mn mn  m'l''" = m x i n  _ n  - x
_(Tr n max I n n -*0; z n-i' c (- (t -2 and for cR

n 2<j:mn 3 j-1 n n 2' j-1

X(.,n ' ) is the polygonal path given by X(0,1n 7 ) =0, X(tn' n) =IT and linear
n n ] n

. in each of the intervals [t ,t3]; i<j<m . (It is required that the lim in 6.11

*-. exists for all z -- i, 6(0T ) -0 and is independent of the sequences {z }{nl ).n n n n

It is easy to see that for all H , X(,fH ,n) belongs to H and thus in.. n n

(6.1) above, we can replace F by f, its restriction to H. Indeed, denoting by

* P the orthogonal projection on H given by (5.25), we have

n
.-- , fX( ' , C P T (H).

nn n

n n
Also, if ) is the orthogonal basis for P (H) given by (5.24), then

n n
it is easy to see that

mI-|- " .L

n =1 (nt 1)

and

22 n (J - -l2
% 'e (6.3) flKx(t,n, ) dt = nX(4, n, )i =n0 n.n j=l t. -t

" j-i

* *.- ...........................................................................-..."".........,...,.......-.-.
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n_ n -Thus, substituting C! = (Cj- j ) (t -t ) in (6.1) (with 0 =0) and re-
j j j1 j-l

calling that f=FIH, x(-,il n,) EH, we get (using (6.2),(6.3)), that the integral

appearing on the RHS of (6.1) is J (Zn,P ) (see (4.1)).
f nil n

nThus their definition can be rewritten in our notations as

(6.4) sq F(x)dx lim J (z ,P
n fnl n

n

if the limit exists for all Z n-i, {in such that 6(]) -0 and f=FIH. Thus it

is clear that in the definition of the sequential integral of F, the values of F out-

side U do not play any role. Also it is easy to see that

(6.5) jsfq F(C)dC = Iq(f)
5

" if the latter exists, where f=FIH. These remarks show that the sequential inte-

gral of Cameron-Storvick is really an integral over H and not over C0 [0,1]. (The

authors of [3) themselves seem to have realized this. See note at the end of

Section 3 and the counterexample in [3]).

In [3], Cameron and Storvick have shown the existence of and evaluated the

integral fanfq F(Q)dE for F ES, where (in our notation)

S-. s = {F: F( ) f -exp(i(n, )~)dV (n) s-a.s., p c, ..(H)

As has been pointed out in Johnson [10] and Kallianpur-Bromley [11], the evaluation

of this integral follows immediately upon observing that S is, in fact, the Fresnel

class

s F(C [0 ,1]).

A
As regards the sequential integral, they have shown its existence for F ES,

where

A
S -{F: V(F) ; (F) 2H and for some J E Al(H)

F(n) = fexp(i(Tj,n'))di(n') for all iicH}.

A
It is clear that S essentially coincides with F(H) and the existence of the se-

A
quential integral for F ES follows from our result (Theorem 4.1), the proof of

V*
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the latter being quite elementary and short.
A

In addition to S and S, Cameron and Storvick introduce yet another class of

integrands S*, the motivation for which seems to be to qet a class of functions

F on C[0,1] such that the restriction f of F to H contains all the "informatioi"

about F (or in other words uniquely determines F) so that even thouqh their de-

finition of the sequential integral involves only f, the integral can be called

" . "the inteqral of F". The class S* is defined as

S*= {F: a-pE (H) such that F(C) = fH e d(i) , s-a.e.

and
'' f i(fl'f')d

F(T) =f e dp(n') for all ' EH}.
x

- For F E S*, we have for all > 0,

"' (6.6) R(f = F

where f=F H and thus for FeS*, we have

(6.7) fq F(d Iq(F).
C O [0 ,1]

Thus, for F ES*, the Cameron-Storvick definition does give the "right" answer,

but that is because (6.7) holds and the fact remains that their definition of the

sequential Feynman integral of F over C 0[0,1] really defines the sequential Feyniman

* integral of f =FIH over H.

we feel that though the analytic Feynman integral on C1O,] can be defined

without any reference to the RKHS H of the Wiener measure; the abstract Wiener

* space structure (i,H,C[0,l]) and the m-lifting R are crucial for -. l.efinition

of a sequential Feynman integral over C [0 ,l], as indeed they are for the general

theory developed in this paper.

* (2) Truman (15]; Elworthy and Truman [5]

These authors have given a sequential definition of the Feynman integral, not

for an abstract Hilbert space, but for the Hilbert space N; of paths. They use
t

.'- . ° z .. " ' . -, : . -. ' . ." . . " " ''- -' .' .- ''t '' .'''', '' J" "-%- ' % - '2 - -
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polyqonal projections P of the form (5.25). For a function f on H, they first

0 define the Feynman integral of the finite dimensional functional foP1T , denoted by

F I(f) as an appropriate improper integral in [15] and oscillatory integral in [5].

Then the Feynman integral of f, F (f) is defined as the limit (if it exists) of

(f) as 6(P) *0.
1T1

Their definition for the class G (H) can be stated in our notation as follows:

F1 (f) = lim J (z,P

ZEQ

and

F (f) = lim F (f).
7T

Thus, their definition involves a repeated limit and as a consequence, they can

not have a formula like (4.46) that evaluates the Feynman integral as a single

limit of proper Lebesgue integrals. In (15], the Feynman integral for the Fresnel

class was evaluated and further the Cameron-Martin formula was obtained under the

condition that the Maslov index of (I +A) is zero. However, the change of varia-

bles of integration and the use of the 'Jacobian' formula for improper integrals

employed in the proof needs justification.

(3) In (14], Tarski has given a sequential definition for an abstract Hilbert

space which is closer in spirit to our sequential definition. His definition can

be roughly described in our notation as follows: If

A
(6.8) J (z) = lim J (z,P)

f PEPf
and

q A-

./' (6.9) 1q(f) = lim JW

i_z q- iq

exist, then define Iq(f) to be the Feynman integral. He states (6.8) in a dif-

ferent form:

A
(6.8) ' Jf(z) = lim J f(z,P

n n

&%'%
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where {P } belongs toa "determining" class. (6.8)' can easily be seen to be equi-
n

valent to (6.8). However, this is not his precise definition. It is more com[pli-

cated, and it is such that the formula

iq(f) = e iq(a,a) q iq(-,a)
I M = e I (ef()

6is built into the definition.

Observe that the limit in (6.8)' is taken along increasing sequences iP I in
n

a 'determining class', and thus in the case when the underlying Hilbert space is

the space of paths H or Rt, the polygonal approximation to the Feynman integraltt

may not 1,e valid. Even if the determining class consists of all increasing

sequence s, the polyqonal approximation will be valid for only successively finer

partitions.

Since Tarski's definition also uses a repeated limit (see (6.8) and (6.9)

above) like that of Elworthy and Truman--though in the reverse order--the same

criticism applies to Tarski's definition as well.
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